

Reg.	No.	********************

IV Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards)

MATHEMATICS

MAT4C15: Operator Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let X be a Banach space over K and let $A \in BL(X)$. Prove that $\sigma(A)$ is a compact subset of K.
- 2. If $x_n \stackrel{\circ}{\to} x$ and $y_n \stackrel{\circ}{\to} y$ in a normed space X and $k_n \to k$ in K, prove that $x_n + y_n \stackrel{\circ}{\to} x + y$ and $k_n x_n \stackrel{\circ}{\to} kx$.
- 3. Let X be a reflexive normed space. Prove that X is separable if and only if X' is separable.
- 4. Let X and Y be a normed spaces and F: X → Y be linear. Prove that F is a compact map if and only if for every bounded sequence (x_n) in X, (F (x_n)) has a subsequence which converges in Y.
- 5. Let H be a Hilbert space and $A \in BL(H)$. Prove that A is normal if and only if $||A(x)|| = ||A^*(x)||$ for all $x \in H$.
- 6. Let A ∈ BL(H). If A is compact, prove that A* is also compact.

PART-B

-2-

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. Let X be a nonzero Banach space over C and A ∈ BL (X). Prove that
 - a) $\sigma(A)$ is non empty.

b) $r_{e}(A) = \inf_{n=1,2,...} ||A^{n}||^{\frac{1}{n}} = \lim_{n \to \infty} ||A^{n}||^{\frac{1}{n}}$

- 8. a) Let X be a normed space and $A \in BL(X)$ be of finite rank. Prove that $\sigma_e(A) = \sigma_a(A) = \sigma(A)$.
 - b) Let X, Y and Z be normed spaces. Let F∈BL(X, Y) and G∈BL(Y, Z). Prove that
 - i) (GF)' = F'G'
 - ii) ||F'|| = ||F|| = ||F"|| and
 - iii) $F'' J_x = J_y F$.
- 9. a) Let X be a normed space. If X' is separable, prove that X is separable.
 - b) Prove that $x_n \stackrel{\circ}{\to} x$ in l^1 if and only if $x_n \to x$ in l^1 .

Unit - II

- 10. Let X be a normed space. Prove that X is reflexive if and only if every bounded sequence in X has a weak convergent subsequence.
- 11. a) Let X be a uniformly convex normed space and (x_n) be a sequence in X such that $||x_n|| \to 1$ and $||x_n + x_m|| \to 2$ as m, $n \to \infty$. Prove that (x_n) is a Cauchy sequence.
 - b) Let X and Y be normed spaces and $F \in BL(X, Y)$. If $F \in CL(X, Y)$, prove that $F' \in CL(X, Y)$. Also show that the converse holds if Y is a Banach space.
- 12. Let X be a normed space and $A \in CL(X)$. Prove that dim $Z(A'-kI) = \dim Z(A-kI) < \infty$ for $0 \ne k \in K$.

Unit - III

- 13. a) Let H be a Hilbert space and $A \in BL(H)$. Prove that there is a unique $B \in BL(H)$ such that for all $x, y \in H$, $\langle A(x), y \rangle = \langle x, B(y) \rangle$.
 - b) Let H be a Hilbert space and A∈BL(H). Prove that R(A) = H if and only if A* is bounded below.
- 14. a) Let H be a Hilbert space and $A \in BL(H)$. Let A be self adjoint. Prove that $||A|| = \sup \{|\langle A(x), x \rangle| : x \in H, ||x|| \le 1\}.$
 - b) State and prove generalized Schwarz inequality.
- 15. a) Let H be a Hilbert space and $A \in BL(H)$. Prove that $\sigma_e(A) \subset \sigma_a(A)$ and $\sigma(A) = \sigma_a(A) \cup \{k : \overline{k} \in \sigma_e(A^*)\}.$
 - b) Let $H \neq \{0\}$ and $A \in BL(H)$ be self adjoint. Prove that

$$\{m_A, M_A\} \subset \sigma_a(A) = \sigma(A) \subset [m_A, M_A].$$

